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Typhoons and hurricanes cause extensive damage to coast cities annually, demanding urban authorities to take effective
actions in disaster response to reduce losses. One of the first priority in disaster response is to identify and clear road obstacles,
such as fallen trees and ponding water, and restore road transportation in a timely manner for supply and rescue. Traditionally,
identifying road obstacles is done by manual investigation and reporting, which is labor intensive and time consuming,
hindering the timely restoration of transportation. In this work, we propose RADAR, a low-cost and real-time approach to
identify road obstacles leveraging large-scale vehicle trajectory data and heterogeneous road environment sensing data. First,
based on the observation that road obstacles may cause abnormal slow motion behaviors of vehicles in the surrounding road
segments, we propose a cluster direct robust matrix factorization (CDRMF) approach to detect road obstacles by identifying
the collective anomalies of slow motion behaviors from vehicle trajectory data. Then, we classify the detected road obstacles
leveraging the correlated spatial and temporal features extracted from various road environment data, including satellite
images and meteorological records. To address the challenges of heterogeneous features and sparse labels, we propose a
semi-supervised approach combining co-training and active learning (CORAL). Real experiments on Xiamen City show that
our approach accurately detects and classifies the road obstacles during the 2016 typhoon season with precision and recall
both above 90%, and outperforms the state-of-the-art baselines.
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1 INTRODUCTION
Natural disasters, such as typhoons, hurricanes, and earthquakes, often bring extensive damage to city infrastruc-
tures and cause great loss of lives every year. With the rapid population growth and economic development, the
cost of natural disasters have been constantly increasing in urban areas [5]. For example, on September 15, 2016,
Typhoon Meranti made landfall in Xiamen City, China, leaving more than US$2.6 billion in economic losses1. In
order to reduce human injuries and prevent further damage after natural disaster strikes, it is important for urban
authorities to make efficient disaster response plans and take quick disaster response actions [38]. One of the
first steps is to restore road transportation, such as cleaning fallen trees, draining ponding waters, and removing
crashed vehicles on the road [24, 49]. These road obstacles may impede timely search and rescue, evacuation to
shelters, and restoration of food and electric supply. Therefore, it is essential for urban authorities to identify and
clear road obstacles in a timely manner.

Different strategies have been implemented to identify road obstacles for disaster response, such as sending out
investigators to conduct road condition surveys, or reviewing traffic surveillance cameras to detect road obstacles
from videos. The ability to accurately report when, where, and what types of obstacles are occurring on the road
network is critical to the timely restoration of transportation. However, traditional strategies usually consume a
great amount of human labor, which is especially expensive in disaster response scenarios, and thus hindering
the timely report of road obstacles. Besides, sending out road investigators immediately after the disaster strikes
may induce potential human injuries, and traffic surveillance cameras may be destroyed during the disaster,
resulting in incomplete road obstacle reporting. Therefore, a real-time, low-cost, and comprehensive road obstacle
identification method is in great need for disaster response.
Fortunately, with the advance of ubiquitous sensing technologies and paradigms, large amounts of urban

sensing data are generated and collected in an unprecedented level [57, 61]. These cross-domain heterogeneous
urban sensing data provide us with new opportunities to understand road conditions and identify potential road
obstacles. In particular, two categories of urban sensing data are highly correlated with road conditions. The
first category is vehicle trajectory data, which are generated by GPS-equipped vehicles (e.g., taxicabs) running on
road surfaces [60]. These vehicles can be viewed as ubiquitous mobile sensors (i.e., Vehicle-as-a-Sensor, VaaS)
constantly probing road conditions [63]. By analyzing the GPS trajectories of these vehicles, we can identify
traffic anomalies potentially caused by road obstacles. For example, when a road segment is blocked by fallen
trees, vehicles will not be able to go through it and their trajectories may vary from the normal patterns. The
second category is road environment data, which describe the spatial and temporal environmental conditions
of road segments, such as the road elevation, the roadside trees, and the weather conditions [56]. These road
environment data can help infer the types of road obstacles after disaster strikes. For example, road segments
with flourishing roadside trees may have higher probability of being blocked by fallen trees after a typhoon strike.

Therefore, we propose to leverage the above-mentioned cross-domain urban sensing data for automatic road
obstacle detection and classification for disaster response. In the first step, we attempt to detect potential traffic
anomalies caused by road obstacles. One intuitive approach is to extract a set of statistical traffic flow parameters
(e.g., vehicle number) for each road segment from historical data. Then, one can build anomaly detection models to
find significant and unusual decreases in traffic flow, and correspond these anomalies to the potential obstacles in

1https://en.wikipedia.org/wiki/Typhoon_Meranti
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(a) Number of vehicles (#Vehicle) (b) Number of slow motion behaviors (#Slow)

Fig. 1. Examples of traffic flow volumes and slow motion behaviors observed in three different road segments in Xiamen City
from September 12, 2016 (Monday) to September 18, 2016 (Saturday). During the landfall of Typhoon Meranti on September
15, 2016 (Thursday), significant decreases of traffic flows are observed in all the three road segments, while only road segment
#3 observe a significant increase of slow motion behavior.

the road segment. However, such a traffic-flow-based approach does not work well in disaster response scenarios.
In fact, after a disaster strikes, the number of vehicles running on road usually decreases significantly due to safety
concerns, generating abnormal traffic flows in almost every road segments. Consequently, the traffic anomalies
caused by potential road obstacles are overwhelmed and thus difficult to detect. For example, in Figure 1(a),
we observe significant decreases of traffic flow in all of the three road segments in Xiamen City after Typhoon
Meranti’s landfall, although only the third one is reported with road obstacles (fallen trees on Xianyue Road, the
details are later presented in case studies).

In order to detect road obstacle from vehicle trajectories, we propose a novel approach by exploiting the slow
motion behaviors in vehicle trajectories. Based on our observations, when a driver encounters road obstacles, they
usually slow down the vehicle, observe the road conditions, and then make a decision to either change direction
or slowly bypass the obstacle. Such slow motion behaviors can be extracted from vehicle GPS trajectories, and
be exploited to detect potential road obstacles. For example, in Figure 1(b), we observe a significant increase of
slow motion behaviors in road segment #3 after Typhoon Meranti’s landfall on Xiamen City, which is induced by
fallen trees on the road surface.
Nevertheless, it is still possible that some of the slow motion behaviors are not induced by road obstacles.

For example, traffic lights at intersections may cause vehicles to slow down in a periodical pattern, and road
segments with u-turn signs may also observe large number of slow-moving vehicles constantly. These kinds
of slow motion behaviors, however, usually occur regularly on specific road segments, demonstrating certain
spatio-temporal patterns. In contrast, the slow motion behaviors induced by road obstacles are usually abnormal
in the given road segment and time span. Moreover, such an anomaly is usually observed in a collective way, i.e.,
impacting a collection of neighboring road segments and lasting for a consecutive period of time. For example,
fallen trees in an intersection may cause unexpected slow motion behaviors in the surrounding roads until they
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are removed. Therefore, we need to design an effective algorithm to separate the collective anomalies of slow
motion behaviors for road obstacle detection.

After detecting the road obstacles, it is essential for urban authorities to identify their types, such as fallen trees,
ponding water, and congested vehicles on road. Since different types of road obstacles may induce similar slow
motion behaviors, it is difficult to classify these obstacles merely based on the vehicle trajectory data. Therefore,
we propose to involve the road environment data to model the context of the obstacles, and thus inferring their
corresponding types. For example, obstacles observed on flourishing road segments after a typhoon strike may
probably be classified as fallen trees. To this end, the following challenges need to be addressed:
• Heterogeneous features. Due to the considerable variety and volume of road environment data, it is not
straightforward to select a set of representative features to model the context of road obstacles. Moreover,
how to effectively incorporate these heterogeneous features into a data analytics model is also challenging.
• Insufficient labels. In order to train a model for road obstacle classification, we need to collect a set of
road obstacle instances as ground truth. However, validating road obstacles is labor-intensive and time-
consuming, making it difficult to collect a large enough training set. Therefore, we need to propose an
effective road obstacle classification model to learn from these sparse labels.

In this paper, we propose a two-phase framework for road obstacle detection and classification. In the first
phase, we extract the slow motion behaviors from vehicle trajectories in each road segment, and build a spatio-
temporal matrix to model these slow motion behaviors in a city-wide level. We then propose a robust matrix
factorization-based method to separate the collective anomalies from the slow motion behavior matrix. To ensure
that each separated anomalies are collective in neighboring road segments for a consecutive period of time, we
incorporate a clustering-based outlier-remover method in the factorization algorithm, and detect road obstacles
based on the corresponding collective anomalies. In the second phase, we identify two categories of contextual
factors related to road obstacles from various road environment data, i.e., the spatial contextual features (e.g.,
roadside trees, road elevation, and road properties) and the temporal contextual factors (e.g., wind, rainfall, and
visibility). In order to accurately classify the road obstacle with these heterogeneous features and sparse labels,
we propose a semi-supervised learning approach combining co-training [39] with active-learning [45]. More
specifically, we first train a spatial classifier and a temporal classifier, respectively, using the corresponding feature
categories and a sparse training set. We then iteratively improve the model accuracy by adding the confident and
salient instances in the unlabeled set to the training set, and retrain the model. A confident instance is identified
if it receives the same label from both classifiers with high classification confidence [36], and a salient instance is
identified if it is difficult to classify for both classifiers, i.e., receiving different labels with low confidence. We add
the confident instances to the training set (co-training), and actively collect the labels of the salient instances
from a crowdsensing platform (active learning), and add them back to the training set.
Briefly, the contributions of this paper include:
• To the best of our knowledge, this is the first work on road obstacle detection and classification for disaster
response leveraging cross-domain urban sensing data. By fusing the large-scale vehicle trajectory data with
the heterogeneous road environment data, we are able to accurately identify road obstacles for disaster
response in a low-cost and automatic manner.
• We propose a two-phase framework to identify road obstacles by leveraging the slow motion behaviors and
road environment contexts. In the detection phase, we exploit a sliding-window based method to extract
slow motion behaviors from vehicle trajectories, and propose a cluster direct robust matrix factorization
(CDRMF) approach to detect the collective anomalies induced by road obstacles from the spatio-temporal
slow motion behavior matrix. In the classification phase, we extract two categories of road obstacle
contextual features (i.e., spatial-features and temporal-features) from various road environment datasets,
and propose a co-training and active learning (CORAL)-based approach to learn an effective classification
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Fig. 2. Overview of the framework.

model using the spatio-temporal features and a sparse training set. The CORAL approach iteratively
improves the classification accuracy by adding confident instances to the training set, and actively labeling
salient instances using a crowdsensing platform.
• We evaluate our framework on Xiamen City with a large-scale taxi trajectory dataset and various environ-
ment sensing datasets. Results show that our framework accurately detects and classifies different types of
road obstacles during the 2016 typhoon season, achieving an overall precision and recall both above 90%,
and outperforms the state-of-the-art baseline methods.

2 PRELIMINARY AND FRAMEWORK OVERVIEW
Definition 2.1. GPS Dataset: the vehicle GPS dataset we collect can be described by a set of GPS points denoted

by 4-tuples:
P = {p |p = (v, t , lat , lnд)}

where v, t , lat , lnд are the unique vehicle ID, time stamp, latitude, and longitude from GPS transmitters.

Definition 2.2. Vehicle Trajectory: we define a vehicle trajectory as a sequence of GPS points p1 → p2 →
· · · → pn , where pi ∈ P , 1 ≤ i ≤ n.

Definition 2.3. Road Segment: we partition a city into an I × J grid map based on the longitude and latitude,
and define a road segment r as a grid containing roads for vehicles.

Definition 2.4. Time Span: we divide the duration of observation data into equal time spans t , each time span
lasts for a period of time, e.g., half an hour.

We propose RADAR, a two-phase framework to detect and classify road obstacles for disaster response. As
shown in Figure 2, we first extract slow motion behaviors from a large-scale vehicle GPS trajectory dataset with
a sliding-window-based method. In the road obstacle detection phase, we organize the slow motion behaviors
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Fig. 3. Slow motion sequence extraction from GPS trajectory leveraging an adaptive sliding-window.

into a spatio-temporal matrix with a road segment dimension and a time span dimension. We then perform the
CDRMF algorithm on the matrix to extract collective anomalies of slow motion behaviors, and correspond these
anomalies to the potential road obstacles. In order to classify these detected road obstacles, we identify several
relevant environment sensing data, and extract a set of spatial and temporal contextual features correspondingly.
In the road obstacle classification phase, we exploit the co-training diagram to train a spatial classifier and
a temporal classifier, respectively, using the corresponding contextual features and a sparse training set. We
iteratively add confident and salient unlabeled instances to the training set to improve the model accuracy,
leveraging a crowdsensing-based active learning diagram which actively collect labels for the salient instances
from a crowdsensing platform. We elaborate the key steps of the framework in the following sections.

3 SLOWMOTION BEHAVIOR EXTRACTION
The slow motion behaviors of vehicles may indicate potential obstacles on the road. For example, fallen trees
that block a road may force the drivers to slow down and change direction. Such slow motion behaviors can be
captured from vehicles’ GPS trajectories if the data points are collected frequently enough. In this work, we use
a taxi GPS trajectory dataset collected every one minute. We elaborate on the method to extract slow motion
behaviors from taxi trajectories as follows.
First, we employ an adaptive sliding-window-based method [15] to extract slow motion sequences from taxi

GPS trajectories. More specifically, for a trajectory p1 → p2 → · · · → pn , we extract every slow motion sequence
pm → pm+1 → · · · → pm+k (1 ≤ m < n, 1 ≤ k ≤ n −m) in which the distance (dist) between each pair of adjacent
points is less than a threshold δp , i.e.,

∀m ≤ i < m + k,dist(pi ,pi+1) < δp (1)

We use a sliding-window with adaptive size along the trajectory to find such slow motion sequences. In
particular, we dynamically extend the window size by adding new points until the newly-formed sequence violates
requirement 1. We use an example in Figure 3 to elaborate on the process. For the trajectory p1 → p2 → · · · → p7,
we start by creating a window consisting of the first two points (p1,p2 in this case), and check whether the
distance between p1 and p2 is less than δp . Since dist(p1,p2) > δp , we discard this window, and slide the window
to start over from the end point (p2), and create a new window (p2,p3). We see dist(p2,p3) < δp so the window is
kept; since dist(p3,p4) < δp , we extend the window by adding p4, and repeat this procedure for the next adjacent
points until the distance constraint is violated. Finally, we obtain a sequence containing a set of consecutive
points p2 → · · · → p6.

We filter out sequences with long-term duration, which may correspond to non-driving behaviors such as taxi
driver shift or vehicle repair. Finally, we map each slow motion sequence pm → pm+1 → · · · → pm+k to a slow
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Fig. 4. An illustrative visualization of the extracted slow motion behaviors after the landfall of Typhoon Meranti in Xiamen
City (2016/09/15 09:00–2016/09/15 17:00), and the temporal variations of slow motion behaviors in three typical road segments
during one month (2016/09/01–2016/09/30). (#1: Xianyue Expressway, #2: Hubin South Road, #3: Qianpu East Road)

motion behavior, as denoted by a triple:
b = (v, r , t)

where v is the corresponding vehicle ID. We determine the road segment r by mapping the coordinates of the
sequence centroid [(pm .lat + pm+k .lat)/2, (pm .lnд + pm+k .lnд)/2] to the city grid system, and determine the time
span t by mapping the middle of the duration (pm .t + pm+k .t)/2 to the time span partition system.

Figure 4(a) shows a visualization of the extracted slow motion behaviors after the landfall of Typhoon Meranti
in Xiamen. We observe a cluster of slow motion behaviors on the major roads of the downtown area, which may
be induced by ponding water on the road surface, since the elevation of downtown Xiamen is relatively low2.
Another cluster of slow motion behaviors can be found along the Xianyue expressway, which was covered by
flourishing trees, and the slow motion behaviors may be induced by fallen trees during the typhoon landfall.

4 ROAD OBSTACLE DETECTION
In this phase, our objective is to detect road obstacles from the extracted slow motion behaviors. The rationale
behind this approach is that when an obstacle is present in a road segment, it may induce a collective anomaly
[64] of slow motion behaviors. The meaning of collectiveness is two-fold. First, such an anomaly may be observed
in a collection of neighboring road segments. Second, such an anomaly may last for a consecutive period of time
after the road obstacle is present. For example, when fallen trees block a lane, various slow motion behaviors,
such as turning and bypassing, can be observed in the surrounding road segments and last for a period of time
until the road obstacle is removed. Consequently, simply building a time series anomaly detection [6] model for

2http://www.floodmap.net/elevation/ElevationMap/?gi=1790645
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each road segment to detect road obstacle does not work well in this problem, as the spatio-temporal collectiveness
is not properly preserved and modeled.
The second challenge is that the slow motion behaviors we collect are in a mixed state due to various causal

factors. Based on our observations, slow motion behaviors can be induced not only by road obstacles, but also
by traffic lights and turning signs, rush hour traffic congestions, picking up and dropping off passengers, etc.
Directly detecting anomalies from such a mixed state and corresponding them to road obstacles can be very
difficult and unreliable [13, 21].
To address these challenges, we propose a robust matrix factorization-based approach to separate the spatio-

temporal collective anomalies from the mixed slow motion behaviors, and correspond them to the road obstacles.
First, we build a slow motion behavior matrix with a road segment dimension and a time span dimension. Each
cell of the matrix denotes the number of slow motion behaviors observed in the specific road segment during the
specific time span. Then, we separate the slow motion behaviors induced by different causal factors based on their
spatio-temporal properties. We note that slow motion behaviors induced by traffic lights and turning signs are
usually observed regularly in some specific road segments and time spans, while the collective anomalies of slow
motion behaviors induced by road obstacles tend to be abnormal events in the spatio-temporal space. Moreover,
such collective anomalies are usually observed in geographically clustered road segments over a consecutive
period of time. With these insights, we propose a Cluster Direct Robust Matrix Factorization (CDRMF) [3, 54]
approach to automatically decompose the mixed slow motion behavior matrix into a low-rank component and a
sparse-and-clustered component. The low-rank component represents the regular slow motion behaviors induced
by traffic lights and turning signs, etc., while the sparse-and-clustered component corresponds to the unusual and
clustered collective anomalies induced by road obstacles. We elaborate on the details of our approach as follows.

4.1 Slow Motion Behavior Matrix Construction
We build a spatio-temporal matrixM ∈ RNr×Nt with two-dimensions denoting Nr road segments and Nt time
spans. Each entry of the matrixM(r , t) denotes the number of slow motion behaviors observed in road segment r
during time span t .
In particular, we analyze the temporal variations of slow motion behaviors in three typical road segments

in Xiamen City during one month (September 2016), as shown in Figure 4(b). For road segment #1 (Xianyue
Expressway), we observe a significant increase of slow motion behaviors during Typhoon Meranti’s landfall in
Xiamen (September 15–17), which corresponds well with the fact that fallen trees induced by strong winds block
several lanes in Xianyue Expressway3. We also observe several abnormal increases of slow motion behaviors in
road segment #2 (Hubin South Road), which is built in a low elevation area. These anomalies might be correlated
with the road surface water ponds induced by heavy rains. As an counter example, we observe regular patterns of
slow motion behaviors on road segment #3 (Qianpu East Road), which is a popular business and activity district
in Xiamen City, and thus the regular patterns may correspond to the passenger pick-up and drop-off events
instead of road obstacles.

4.2 CDRMF-Based Road Obstacle Detection
With the slow motion behavior matrix M constructed, we then need to separate the regular and anomalous
slow motion behaviors apart. Such a problem can be addressed by matrix decomposition techniques [32] by
imposing structural constraints on the decomposed components [29]. In particular, Robust Matrix Factorization
(RMF) [3, 29, 54] approaches have been proposed to decompose a mixed matrix into a low-rank part and a sparse
part in an automatic manner, and have been widely adopted in robust modeling and anomaly detection [47].
The low rank component can be used to describe the regular patterns of slow motion behaviors, but the sparse

3http://weibo.com/1976447603/E8vIamwnv
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component may have arbitrary structure which does not necessarily correspond to the collective anomalies we
desire. Therefore, we improve the RMF approach by adding a clustering step to pursue a sparse-and-clustered
component that corresponds to the collective anomalies.
Problem: we define our objective as to decompose the mixed matrix M into a low-rank matrix L and a

sparse-and-clustered matrix S , i.e.,

M = L + S

s .t . rank(L) ≤ k,

card(S) ≤ c,

outlier (S) ≤ ϵ

L ≥ 0, S ≥ 0

(2)

where card(S) denotes the cardinality of S , i.e., the number of non-zero elements in S . By imposing the constraints
on rank(L) and card(S), we pursue a low-rank L and a sparse S , respectively. Besides, we need to make sure that
the non-zero elements in S are distributed collectively in neighboring road segments and consecutive time spans.
Therefore, we use outlier (S) ≤ ϵ to prevent outliers that are isolated from their spatio-temporal neighbors, where
ϵ is a very small value close to zero.

Solution: solving Problem (2) is not trivial due to its non-convex constraints [54]. Traditionally, such kind of
problem is solved using relaxation techniques [47], i.e., by relaxing the matrix rank of L with its nuclear norm
[47], and relaxing the cardinality of S using its ℓ1 norm [48]. The relaxed problem is then solved using alternating
minimization techniques [47]. However, the traditional relaxation techniques have several limitations. First, it is
difficult to represent and impose the clustered structure of S to the relaxation problem. Second, it is unknown
how well the relaxation approximate the original problem in general [54].
In this work, we proposed a Clustered Direct Robust Matrix Factorization (CDRMF) approach for collective

anomaly detection, which is built on the recently proposed Direct Robust Matrix Factorization (DRMF) method
[54]. Instead of using relaxation techniques, the DRMF approach directly solves the matrix decomposition problem
by alternatively optimizing the low-rank component and the sparse component. In order to impose the clustered
structure constraint, we improve the DRMF algorithm by iteratively removing the isolated outliers in the sparse
component in the optimization process.
Algorithm: the detailed process of CDRMF is described in Algorithm 1. The CDRMF algorithm is initialized

with the mixed matrixm, the rank constraint k , and the cardinality constraint c . In each iteration, we perform
two steps to update the low-rank component L and the sparse-and-clustered component S . In the first step, we fix
and remove the sparse component S fromM , and approximateM − S by a low-rank component L. In the second
step, we fix and remove the low-rank approximation L fromM to obtain the residual M − L, and find the optimal
sparse-and-clustered S to recover the residual. We repeat the process until the algorithm is converged or the
maximum iteration number is reached. Finally, we output the low-rank component L as the regular patterns, and
the sparse-and-clustered component S as the collective anomalies.
In order to solve the low-rank approximation problem, we perform Single Value Decomposition (SVD) [26]

on M − S , and truncate its top-k singular vectors to construct a rank-k approximation L = M − S . Since only
the first k singular vectors are required, we accelerate the computation using partial SVD algorithms [55]. We
propose a two-step approach to solve the sparse-and-clustered optimization problem. First, we find the optimal
approximation of the residualM − L under the cardinality constraint card(S) ≤ c . This can be done directly by
copying the top-c largest values inM−L to S and setting the rest entries of S to zeros. The proof of this method can
be found in [54] and thus omitted here. Then, we perform a clustering operation for the non-zero elements in S
using the DBSCAN algorithm [44], and remove the outliers that are isolated from their spatio-temporal neighbors.
In particular, we use the geographic distance between road segments and temporal distance between time spans
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to determine the search distance in clustering. In this way, we obtain a sparse-and-clustered component S to
approximate the residual in the iteration.

ALGORITHM 1: The CDRMF algorithm for collective anomaly detection
Input: M the slow motion behavior matrix

k the maximum rank
c the maximum cardinality
max_iter the maximum number of iterations

Output: L the low-rank component
S the sparse-and-clustered component

1 Initialize: S ← 0
2 while not converged and iteration < max_iter do
3 a) Solve the low-rank approximation problem:
4 L = argminL | |A − L| |F , A = M − S

5 s .t . rank(L) ≤ k

6 b) Solve the sparse-and-clustered optimization problem:
7 S = argminS | |B − S | |F , B = M − L

8 s .t . card(S) ≤ c, outlier (S) ≤ ϵ

9 error ← ||M − L − S | |F
10 end

4.3 Road Obstacle Detection
Finally, we map the detected sparse-and-clustered collective anomalies to the potential road obstacle event. We
note that one road obstacle may induce several collective anomalies spanning among neighboring road segments
and lasting for a consecutive period of time. In particular, we assign each cluster in S with a label and use the
cluster to denote the road obstacle event e , i.e.,

ei = {(r , t)|S(r , t).label = i}

5 CONTEXTUAL FEATURE EXTRACTION
With the road obstacles detected, our next objective is to recognize the types of these obstacles, such as fallen
trees and ponding water. However, since different types of obstacles may induce similar slow motion behaviors, it
is rather difficult to distinguish different types of road obstacle merely based on vehicle trajectory data. Therefore,
we propose to incorporate the cross-domain environment sensing data to model the context of the road obstacles,
and then infer their corresponding types base on the contextual features.

However, due to the considerable variety and volume of these road environment sensing data, it is still not trivial
to identify the correlated factors and extract the effective features for road obstacle classification. Therefore, we
conduct a series of empirical studies to analyze the correlations between road obstacles and various environment
contextual factors, leveraging a set of road obstacle events and road environment datasets collected from Xiamen
City. We elaborate the details of analysis as follows.

5.1 Spatial Contextual Factors
Based on previous studies and surveys [34, 52], the geographic environment conditions of a road segment can
provide strong evidence for inferring the types of potential road obstacles. For example, road segments with
flourishing trees may have higher probability of being blocked by fallen trees after strong winds, and low-elevation
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Fig. 5. Illustrative results of road environment contextual feature extraction.

road segments may be more vulnerable to heavy rains. In particular, we identify the following three key spatial
contextual factors and extract a set of features from the corresponding road environment data.
Roadside tree coverage: the conditions of roadside trees can be observed from high-definition satellite

images. However, labeling the degree of tree coverage for thousands of road segments requires great human
effort. Therefore, we employ a deep learning-based approach [33] to automatically label roadside tree coverage.
First, we obtain a set of satellite images I from Google Earth4, and randomly select a small subset of road segment
images It as training examples. Then, we manually label the degree of roadside tree coverage for the training
examples into five categories, very flourishing, flourishing, median, sparse, clear. Some examples of the labeled
images can be seen in Figure 5(a). Finally, we use a pre-trained deep learning network, AlexNet [30], to extract
features from the set of unlabled road segment images I − It , and predict their corresponding labels using a SVM
classifier [8]. Some examples of the predicted labels are also present in Figure 5(a).
Road segment elevation: road segments with low elevation may be vulnerable to heavy rains caused by

typhoons and hurricanes. The elevation of road segments can be obtained from various Digital Elevation Model
(DEM) [43] data sources with different resolutions. In this work, we extract road segment elevation data from
Google Earth, which provides a base resolution of 30 meters [43] in Xiamen City. An extracted elevation map for
all the road segments in Xiamen City is shown in Figure 5(b).
Road segment properties: road obstacles, such as crashed vehicles caused by traffic accidents and congested

vehicles caused by malfunctioning traffic lights, tend to be observed in road segments with complicated conditions,
e.g., road intersections, traffic circles, and tunnel entries and exits. We identify these complicated road segments
and use this prior knowledge as a feature to infer traffic-induced road obstacles. In particular, we label the
road segment properties by the following categories: intersection, circle, tunnel entry/exit, none. We retrieve the
locations of road interactions and circles from Xiamen Traffic Police, and manually label the locations of tunnel
entries/exits.

4https://www.google.com/earth/
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5.2 Temporal Contextual Factors
In a road segment, different types of obstacles may occur under different temporal contexts [20, 51]. For example,
fallen trees are usually caused by strong winds, water ponds on road faces are usually formed after heavy rains,
and vehicle congestion and accidents are reported more frequently when drivers have limited visibility. By
exploiting the meteorological data from the Weather Underground API5 and Xiamen Meteorological Bureau6, we
identify the following temporal contextual factors and extract a set of corresponding features.
Wind speed: since fallen trees are usually observed after strong winds with a delay, we extract the wind speed

one hour before for each obstacle as the contextual feature, measured inm/s .
Rain precipitation: similarly, water ponds are usually formed after heavy rains. Therefore we extract the

rain precipitation one hour before for each road obstacle as the corresponding contextual feature, measured in
centimeters.
Road visibility: visibility may greatly impact driving safety, especially in heavy rains and foggy weather.

Limited visibility in a road segment may cause potential risks of traffic accidents and congestions, especially in
complicated road segments. We extract fine-grained visibility data in each road segment as the corresponding
contextual feature, measured in meters.

6 ROAD OBSTACLE CLASSIFICATION
In this phase, our objective is to classify the detected road obstacles based on the extracted contextual features.
Intuitively, we can train a predictive model (e.g., artificial neural networks) to classify the road obstacles using the
various contextual features. However, since the spatial and temporal features are extracted from heterogeneous
sources and vary significantly in scales, equally treating these features does not work well in our problem [62].
The other challenge is that obtaining a set of labeled road obstacles large enough for training a predictive model
is rather difficult, since road obstacle reporting is still labor intensive and time consuming, especially in disaster
response scenarios.
In order to address the challenges of heterogeneous features and insufficient labels, we propose a semi-

supervised learning approach combining co-training with active-learning (CORAL). Co-training is a multi-view
learning technique that leverages two conditionally independent models to predict the target labels, and use the
confident prediction results to further improve the model accuracy in an iterative manner [39, 62]. We group
the heterogeneous features into two sets, i.e., spatial and temporal feature sets, and input these features into the
co-training framework. Active-learning takes another approach to improve prediction accuracy by dynamically
selecting a set of uncertain predictions and asking the users to provide labels for these instances, and then it
feeds them back to retrain the model iteratively [50, 59]. We propose a crowdsensing-based platform to obtain
a relatively small set of training labels, and use the active-learning mechanism to gradually obtain new labels
during the training process. The design diagram of the CORAL approach is illustrated in Figure 6. We elaborate
on the details as follows.

6.1 The Co-Training Paradigm
In the co-training paradigm, we feed the two categories of contextual features into a spatial and temporal
inference model, respectively, and iteratively add the instances with high prediction confidence to the training
set to improve model accuracy.

More specifically, we denote the set of detected road obstacles asG = {G1,G2}, whereG1 is the small initial set
of labeled obstacles, and G2 is the large unlabeled set. We obtain the labels of G1 by leveraging a crowdsensing-
based platform, which is detailed in the evaluation section. Using the set of spatial features Fs and temporal

5https://www.wunderground.com/weather/api/
6http://www.xmqx.gov.cn
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Fig. 6. The learning diagram of the proposed CORAL model.

features Ft , we train a spatial learner Ls and a temporal learner Lt respectively, i.e.,

Ls ← Ls .learn(Fs ,G1) Lt ← Lt .learn(Ft ,G1) (3)

Afterward, we apply Ls and Lt to each instance of G2, and select Nc instances that receive the same label from
both Ls and Lt with highest confidence, respectively. Finally, we add the selected instances to G1 as labeled
instances. We repeat this process until G2 is empty or a maximum number of iterations is reached.

6.2 The Active Learning Paradigm
Ideally, the co-training paradigm can improve the model accuracy with the confident unlabeled instances.
However, this approach does not ensure that the selected confident instances are always valuable for improving
the predictive capability of the model [59]. In other words, we can directly select some salient instances to the
models to improve their accuracy. To this end, we incorporate a active learning process to the co-training diagram.
More specifically, in each iteration, after applying Ls and Lt to each instance of G2, we further select Na

instances that are considered most difficult to predict for both predictors. In particular, we select instances that
receive different labels from Ls and Lt with lowest confidence. We then use the crowdsensing platform to collect
the labels for these instances. Finally, we add these salient labeled instances to G1 and retrain the models using
the co-training paradigm.

6.3 Online Learning and Classification
The CORAL model works in a online manner so that learning and classification can be achieved simultaneously.
More specifically, we maintain a learning set G for training the classification model using the CORAL model.
Given a new road obstacle e and the label set C = {c1, c2, . . . , cl }, we apply the learned Ls and Lt on e separately,
and determine the final label c by the product of the two confidence scores generated by the two learners, defined
as follows:

c = argmax
ci ∈C

Ps (C = ci ) × Pt (C = ci ) (4)

where Ps and Pt are the predicted probabilities of the spatial and temporal learners, respectively. After that, we
append e to the training setG and retrain the CORAL model. If additional labels are required during the retraining,
the corresponding crowdsensing platform tasks will be allocated and completed in a given time constraint. Since
online model updating is frequently performed, we adopt a naïve Bayesian network [25] as the ideal multi-class
classifier for the learners Ls and Lt , which is highly scalable, easy to train, and outputs the desired classification
probabilities for confidence estimation.
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7 EVALUATION
In this section, we first introduce the experiment settings, and then present the evaluation results on road obstacle
detection and recognition. We also conduct a series of case studies to demonstrate the effectiveness of our method.

7.1 Experiment Settings
7.1.1 Datasets
We evaluated our framework in Xiamen City during the 2016 Pacific typhoon season7. Xiamen is a coastal city

which suffers from an average of 4–5 times of typhoon each year. We collected a large scale taxi GPS trajectory
dataset and various road environment datasets from July 2016 to December 2016, as summarized in Table 1. The
dataset details and pre-processing steps are elaborated as follows.
Taxi GPS trajectory data: we obtained a large-scale taxi GPS trajectory dataset from Xiamen Traffic Police.

The dataset contains GPS trajectories of 5,486 taxis reported every 1 minute. We extracted only trajectories data
points in the metropolitan area (i.e., Xiamen Island) during the second half year of 2016.
Road environment data: we partitioned Xiamen City into 100m × 100m grids, and obtain 154 × 136 grids.

We then extracted grids with vehicle density above average as road segments for vehicles, obtaining 3,928 road
segments in total. Upon this basis, we collected a set of satellite image patches and elevation data for each road
segment from Google Earth for roadside tree coverage labeling and road elevation sensing, respectively. We also
compiled an hourly meteorology dataset for each road segment, containing the wind speed, rain precipitation,
and visibility readings, based on the data from the Weather Underground API and Xiamen Meteorological Bureau.

Road obstacle data: we developed a crowdsensing platform to collect road obstacles during typhoon seasons,
as shown in Figure 7. We recruited 10 participants to finish the crowdsensing tasks, and each task was assigned
randomly to three participants for cross-validation to avoid observer bias. Each participant was asked to report
the time, location, and type of the road obstacle along with the source materials such as images and videos. An
important source is the social media accounts of urban authorities and local news agencies, such as the Weibo8
accounts of Xiamen Traffic Police9 and Xiamen News Network10. Besides, the traffic congestion and accident
records provided by Xiamen Traffic Police were used as another important source to identify congested and crash
vehicles on the road. Based upon the crowdsensing platform, we collected a total number of 159 road obstacle
events from July 2016 to December 2016. We use this dataset as the ground-truth for evaluating the performance
of various road obstacle detection and classification methods.
7.1.2 Evaluation Plan
We evaluated the performance of our framework in an online manner. We first extracted taxi slow motion

behaviors in all the road segment once every 30 minute. For road obstacle detection, we maintained a slow motion
behavior matrixM with a time window of one month, i.e., 2 ∗ 24 ∗ 30 = 1440 time spans, and updated the matrix
when data from a newer time window were collected. We performed the CDRMF algorithm on M to detect a
set of road obstacles {ei }, and compared the detection results with the ground truth dataset. For road obstacle
classification, we maintained a learning set G and incrementally add new instances into the set. Specifically, for
each newly detected road obstacle {ei }, we used the learned CORAL model to classify it, and then add {ei } to the
training set and update the CORAL model. The initial labels and the additional labels required during the model
updating were obtained by dynamically allocating crowdsensing tasks to the participants. Finally, we compared
the overall classification results with the ground truth dataset to evaluate the model accuracy.
7.1.3 Evaluation Metric

7https://en.wikipedia.org/wiki/2016_Pacific_typhoon_season
8Weibo is a Twitter-like social network popularly used in China.
9http://weibo.com/fjxmjj
10http://weibo.com/xmnn

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 130. Publication date:
December 2017.



RADAR: Road Obstacle Identification for Disaster Response Leveraging Cross-Domain Urban Data • 130:15

Table 1. Summary of Datasets

Data type Item Value

Vehicle trajectory data
# Taxis 5,486
Sampling rate every minute

Road environment data
# Road segments 3,928
Satellite image resolution 2.5 meter
Elevation resolution 30 meter
Meteorology data every hour

Road Obstacles
# Fallen trees 71
# Ponding water 54
# Congested and crashed vehicles 34

Data collection period 07/01/2016 00:00–12/31/2016 23:59
Geographic coverage area Southwest: [24.423250, 118.064743], Northeast: [24.561485, 118.198504]

We compared the detected road obstacles with the ground truth dataset to evaluate the accuracy of a detection
method. Specifically, if a detected obstacle is found in the ground truth dataset, we call it a true positive (TP), and
otherwise a false positive (FP). For a true road obstacle that is not detected using the detection method, we call it
a miss, or false negative (FN). With these definitions, we adopted the following metrics to quantitatively evaluate
the performance of the detection method:

precision =
|TP |

|TP | + |FP |
, recall =

|TP |

|TP | + |FN |
, F1-Score =

2 · precision · recall
precision + recall

(5)

We employed the similar metrics to evaluate the performance of the multi-class road obstacle classification
method. Specifically, we organized the classification results into a confusion matrix [23] C , where each row of
the matrix represents the instances in a predicted class and each column represents the instances in a ground
truth class. Each element Ci, j counts the number of road obstacles that are predicted as class i while actually are
in class j. With these definitions, we derived the following metrics:

precision =
Ci,i∑
j Ci j
, recall =

Ci,i∑
j Cji
, F1-Score =

2 · precision · recall
precision + recall

(6)

We can see that (5) is a special case of (6).
7.1.4 Baseline Methods
We compared our method with various baseline methods with regard to road obstacle detection and classifica-

tion. For road obstacle detection, we compared our CDRMF method with the following baselines:
TFBOY: the traffic-flow-based anomaly detection (TFBOY) baseline method directly uses the number of

vehicles in each road segment during each time span to construct a traffic flow matrix, and use the same matrix
decomposition approach for road obstacle detection.
ARIMA: the single-road-segment time-series-based baseline method models the number of slow motion

behaviors in each road segment as a time series, and employs an auto-regressive integrated moving average
(ARIMA) model [7] to detect significant and unusual events as potential road obstacles.

DRMF: this baseline method differs from the proposed CDRMF method in that it does not perform a clustering
step to remove isolated anomalies.
For road obstacle classification, we compare our CORAL method with the following baselines:

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 130. Publication date:
December 2017.



130:16 • L. Chen et al.

Fig. 7. The developed crowdsensing platform for collecting road obstacles.

ST-ANN: this baseline method directly concatenate the spatio-temporal contextual features, and uses all the
instances in the training set to train an Artificial Neural Network (ANN) model for road obstacle classification.
SCAL: this baseline method exploits only the spatial contextual (SC) features to build a road obstacle classifier

using a naive Bayesian network. The active learning (AL) diagram is also exploited to train the model iteratively
from a minimal training set.
TCAL: similarly, this baseline method exploits the temporal contextual (TC) features and active learning (AL)

to build a road obstacle classifier by iteratively training a naive Bayesian network with a minimal training set.
COTA: this baseline method uses the co-training diagram (COTA) alone without active learning. It trains

a naive Bayesian network-based spatio-temporal model and iteratively improves the model accuracy using
confident unlabeled data.

In order to achieve fair comparison, we make sure that the size of the initial label set and the number of labels
finally used in each active learning-based baselines (including SCAL, TCAL, and CORAL) are the same.
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Table 2. Road obstacle detection results

Methods Precision Recall F1

TFBOY 0.503 0.489 0.496
ARIMA 0.872 0.697 0.775
DRMF 0.730 0.906 0.809

CDRMF 0.953 0.931 0.942

Table 3. Road obstacle classification results

Methods Precision Recall F1

ST-ANN 0.921 0.956 0.938
SCAL 0.772 0.738 0.755
TCAL 0.691 0.649 0.669
COTA 0.843 0.870 0.856

CORAL 0.902 0.931 0.916

7.2 Evaluation Results
We first present the overall results of road obstacle detection and classification using a set of optimal parameters,
and then study of the parameter selection strategies in the CDRMF and CORAL models.
7.2.1 Road Obstacle Detection Results
We compare the overall accuracy of different methods in Table 2. We can see that our CDRMF method achieves

an F1-score of 0.942 (precision=0.953 and recall=0.931), outperforming the other baseline methods. In particular,
the TFBOY method fails to detect most of the road obstacles, since the traffic volume decrease induced by road
obstacles are overwhelmed by the global decrease of traffic volume during post disaster periods. The ARIMA
method achieves a relatively low recall but high precision, meaning that it fails to detect some of the road obstacles
(false negatives) but it does not have many wrong detections (false positives), neither. The probable reason is
that ARIMA does not model the spatio-temporal collectiveness and thus fails to capture collective anomalies
that are not obvious from the view of a single road segment. The DRMF method, on the other hand, achieves
relatively low precision and high recall, which means that it detects many road obstacles but only some of them
are present in the ground truth set (true positives). This is reasonable since DRMF does not impose structural
constraints on the anomalies and thus results in many isolated anomalies that should not be considered being
induced by road obstacles. In general, our method successfully captures the collective anomalies induced by road
obstacles in disaster response scenario and achieves relatively high detection accuracy.
7.2.2 Road Obstacle Classification Results
We present the road obstacle classification results in Table 3. The ST-ANN method achieves the highest

precision and recall using both spatio-temporal features and a full label set. However, in practice, collecting such
a training set is labor-intensive and time-consuming, which hinders the online deployment in disaster response
scenarios. For the other methods, we start from an initial label set of size 7, and limit the total number of labels to
be 20. The SCAL and TCAL baseline methods do not perform well, justifying the assumption that neither set of
features are significant enough for building an effective road obstacle classifier. In contrast, the COTA baseline
performs better by exploiting both sets of features in a co-training model. The proposed CORAL method further
improves the performance by incorporating the active-learning diagram, achieving an F1-score of 0.916 with
precision=0.902 and recall=0.931, outperforming the other semi-supervised-learning-based baseline methods, and
achieving comparable accuracy ST-ANN method using only 12.5% of labels.
7.2.3 Parameter Study
We discuss the parameter selection in the CDRMF and CORAL models as follows.
Low-rank constraint k : in the CDRMF model, the rank constraint parameter k needs to be carefully selected

in order to separate the regular patterns from the mixed slow motion behaviors. We perform a rank estimation on
M using an SVD-shrinkage method [54], and select k = 6 in our experiments that preserve most of the significant
singular values ofM .

Sparsity constraint c: the sparsity constraint in the CDRMF model determines the number of collective
anomalies that can be detected, and thus influences the precision and recall of the model. Based on [54], we vary
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Fig. 8. Parameter impact analysis and optimal parameter selection.

c from 0 to 5% of the size ofM , and present the F1-score under different c values in Figure 8(a). We can see that a
sparsity constraint too small or too large may result in suboptimal model accuracy, and thus we select c = 2% in
our experiments.
Initial label set size |G1 | : in the CORAL model, the set of initially labeled instances is of great importance for

iterative model training. A large initial label set can help achieve high classification accuracy, however collecting
these labeled instances requires great effort and reduces the feasibility of online deployment. Therefore, we have
to make trade-offs between performance and feasibility. As shown in Figure 8(b), we study the F1-score of the
CORAL method against various |G1 | values. We can see that an initial training set of size 7 is large enough to
obtain an F1-score higher than 90%. Therefore, we select |G1 | = 7 as the optimal initial training set size in our
following experiments.
Furthermore, we determine the optimal distance threshold δp = 1m for the slow motion sequence extraction

algorithm, which yields closest results to the observations over a series of repeated experiments. In the CORAL
model, we empirically set the number of the selected instances Nc = Na = 2 based on repeated experiments.

7.2.4 Runtime Performance
We implement the CDRMF and CORAL algorithms using Matlab, based on the DRMF matlab package provided

by [54]. We deploy our framework on a server with Intel core i7-6700K CPU and 16GB RAM, and it takes an
average of 6.1 seconds and 3.2 seconds to do one round of road obstacle detection and classification11, respectively.

7.3 Case Studies
We conduct case studies on road obstacles identification after the landfall of Typhoon Meranti in Xiamen from
09/15/2016 to 09/17/2016. Figure 9 shows the overall distribution of the detected and classified road obstacles. In
general, we observe several water ponds formed in the lower center part of the island, which corresponds to
the downtown area with relatively low elevation. Fallen trees block some of the major roads and cause serious
transportation problems. Traffic accidents induced by heavy rains and limited visibility increase significantly in
complicated road interactions and tunnel entries. These road obstacles pose great challenges for disaster response,
and thus need to be identified and removed as early as possible. In the following analysis, we present two cases
of identified road obstacles.
7.3.1 Fallen Trees on Xianyue Expressway
Figure 9(b) shows the identified fallen trees in Xianyue Expressway, one of the busiest high-capacity road

in Xiamen City. Our framework successfully identifies the road obstacle in 3 neighboring road segments at
11We do not count in the extra time of the crowdsensing tasks
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(c) Hubin South Road: ponding water, satellite images, and elevation of the road segment

(b) Xianyue Expressway: fallen trees, satellite images, and wind speed of 2016/09/15 
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Fig. 9. Case studies on road obstacle identification after Typhoon Meranti’s landfall in Xiamen.

2016/09/15 17:00, which is 16 hours ahead of the event report on the Weibo account of Xiamen Traffic Police12. As
we can see in Figure 9(b), the road segments were covered by flourishing trees before the typhoon strike, which
posed potential risks of fallen trees during the strong winds brought by Typhoon Meranti. Our framework and
analysis can not only help urban transportation authorities to clear the obstacles in a timely manner, but also
provide decision support for urban environment authorities in roadside tree planning and pruning[51].
7.3.2 Ponding Waters on Hubin South Road
Figure 9(c) illustrates the identified ponding water on the surface of Hubin South Road, which is the trunk

road in downtown with a relatively low-elevation (Hubin means lakeside). We identified 5 road segments along
the road influenced by ponding water at 2016/09/15 08:30, which is 2 hours earlier than the event is reported
on the news13. From Figure 9(c), we can see several low-lying road segments alone Hubin South Road near
the Yundang Lake, which are potentially vulnerable to the heavy rains brought by Typhoon Meranti. With the
real-time information at hand, the urban authorities could take preventive actions, for example, by sending out
crews to drain the ponding water and prevent further security issues on the road.

8 RELATED WORK

8.1 Disaster Response
Disaster response is the second phase of the disaster management cycle [38], which consists of a set of actions
conducted to save lives and prevent further property damage in the post-disaster periods [1, 38]. With the
development of mobile Internet technologies and ubiquitous sensing diagrams [57], various approaches have
been proposed to help urban authorities take efficient and effective actions in disaster response. For example, Fan
et al. [21, 22] proposed to detect and predict the human mobility patterns in earthquakes from large-scale mobile

12http://weibo.com/1976447603/E8vIamwnv
13http://weibo.com/1750354532/E8lY2Etxr
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phone GPS dataset, while Sakaki et al. proposed a real-time earthquake detection method by using Twitter users
as social sensors. These knowledge can provide decision supports for urban authorities in disaster response.
In disaster response, restoring the transportation network is usually considered the first step [24, 49], since

road network disruptions impede timely rescue, evacuation, and supply [49]. In order to evaluate the post-disaster
transportation system performance, Chang et al. [9] develop various transportation quality and accessibility
indicators in a quantitative approach. To improve the post-disaster transportation accessibility, Aksu et al. [49]
propose a dynamic-path-based mathematical model to clear critical road obstacles in an optimal order with limited
resources. However, few works in the transportation research area have addressed the problem of identifying
road obstacles in disaster response scenarios.

8.2 Road Obstacle Detection
The road obstacle detection problems have been studied by the computer vision community using several vision-
based approaches [34, 35, 52]. For example, LeCun et al. [34] proposed a convolution neural network-based
approach to detect road obstacles from videos captured by vehicle’s on-board camera, and Lefaix et al. [35] used
a vehicle-mounted camera to detect and track road obstacles by analyzing the image motion patterns. However,
deploying these vision-based solutions to a large crowd of vehicles requires extremely high cost and thus are
infeasible for large-scale road obstacle detection, especially in disaster response scenarios. Another approach
for road obstacle detection can be inspired by the existing traffic accident reporting systems, where citizens
voluntarily report to the traffic police and media outlets about observed road obstacles using phone calls, social
networks, etc. However, the processing of these reports include cross-validating the sources, labeling the locations
and scopes on the map, and broadcasting the message back to drivers. Such a process can still be labor intensive
and time consuming.

In this paper, we propose to exploit vehicle’s GPS trajectories to detect road obstacles based on the abnormal
motion behaviors induced by obstacles. In many cities, operational vehicles including taxicabs and buses are
required to install GPS trackers and continually report their positions [4]. By collecting and analyzing the vehicle
GPS trajectories, a series of urban computing [63] problems have been extensively studied, including route
optimization and planning for taxis [37], bikes[14, 16, 17], and buses [11], abnormal trajectory detection [10], city
function area studies [40], urban event detection[13], crowdsensing [27, 53] and package delivery [12], etc. Yet,
few works have been done in the literature to extract the fine-grained motion behaviors from vehicle trajectories.
Instead, such microscopic motion behaviors are extracted from vehicle mounted sensing devices, such as on-board
diagnostics (OBD) devices [58], accelerometer-enabled smartphones [19], and driving surveillance cameras [41].
However, these specialized devices are not as widely deployed as GPS trackers in a city-wide level, and thus it is
more difficult to obtain large enough datasets for collective vehicle motion analytics.

8.3 Robust Matrix Factorization
In the road obstacle detection phase, we use a robust matrix factorization (RMF) model [3, 29] to separate regular
and anomalous components apart from a mixed matrix. RMF models have been widely used in robust modeling
and anomaly detection problems [47], such as video background modeling [3], robust face recognition [18],
singing voice separation [28], and image denoising [46]. Traditional methods to solve the RMF problem is via
relaxation techniques, for example, by exploiting the ℓ1 norm [46] and ℓ2,1 norm [29] to approximate the matrix
cardinality. In this paper, we use the recent proposed Direct RMF [54] approach instead of relaxation techniques,
and inject a clustering step in the optimization process.
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8.4 Co-Training and Active Learning
In the road obstacle classification phase, we combine the co-training and active learning diagrams in the CORAL
model. Co-training is proposed in [2] as a multi-view learning diagram, and has been used in spatial-temporal
modeling [62] and email classification [31], etc. A comprehensive survey on active learning can be found in [45],
and the application scenarios of active learning include recommender systems [42], sparse mobile crowdsensing
[50], etc. In this work, we combine both co-training and active learning diagrams to address the challenges of
heterogeneous features and sparse labels.

9 CONCLUSION
In this paper, we propose a two-phase framework to detect and classify road obstacles in disaster response
scenarios, leveraging large-scale vehicle trajectories and many cross-domain urban sensing datasets. In order
to detect road obstacles, we extract slow motion behaviors from vehicle trajectories, and propose the CDRMF
approach to detect collective anomalies from a mixture of slow motion behaviors, and correspond them to road
obstacles. In order to recognize the types of the detected obstacles, we exploit the spatio-temporal contextual
features extracted from various environment sensing data to train a classification model. To address the challenges
of heterogeneous features and insufficient labels, we propose a semi-supervised approach combining co-training
and active learning. We evaluate our framework using real-world datasets collected from Xiamen City. Results
show that our framework accurately detects and classifies the road obstacles in the 2016 typhoon season with an
overall accuracy both above 90%, and outperforms the baseline methods.
In the future, we intend to improve this work from the following aspects. First, we plan to use trajectories of

various kinds of vehicles besides taxis, such as buses and rental cars. Second, we plan to characterize the slow
motion behaviors in a finer granularity, for example, by identifying waiting and turning behaviors. Third, we plan
to improve the granularity of road spatial features by incorporating the high-resolution LIDAR (Light Detection
and Ranging) data collected by our team in Xiamen University for better classification of road obstacles. Fourth,
we plan to evaluate our framework in other cities with different geographic and meteorological settings, and
explore the obstacle identification problem under other nature disaster types.
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